Conformational studies of tylosin A, tylosin B, erythromycin B and erythromycin C and full assignments of tylosin A in CDCl₃ and tylosin B in phosphate buffered D₂O

Biljana Arsic¹, Andrew Regan², Gareth Morris², Angela Oates¹, Andrew McBain¹, Jill Barber¹

¹ Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, M13 9PT, Manchester, UK
² School of Chemistry, University of Manchester, Oxford road, M13 9PL, Manchester, UK

Introduction

Erythromycins and tylosins show similar instability in aqueous solution, so they are worthy of investigation and comparison. Tylosin A decomposes into tylosin B in acid (Figure 1A). Erythromycin A is in equilibrium with its hemiacetal form, and decomposes easily in the acid medium (Figure 1B). Erythromycins B and C were synthesized in order to increase acid stability while keeping a similar spectrum of antimicrobial activity to erythromycin A (Figure 1C).

Materials and Methods

Molecular modelling

Conformational searching of tylosin B, erythromycin B and C in water was performed using Macromodel software.

NMR analysis

Full spectral assignments of tylosin A in CDCl₃ and tylosin B in phosphate buffered D₂O were achieved using a combination of 1D and 2D NMR techniques: ¹H, ¹³C, DEPT90, DEPT135, COSY, HSQC and HMBC.

Determination of Minimum Inhibitory Concentrations (MIC)

Minimum inhibitory concentrations (MICs) were determined using standard methods (McBain et al., 2004).

Results and Discussion

The global minimum for tylosin B in H₂O found using Macromodel software was similar to that previously found for tylosin A (Arsic et al., 2017) (Figure 2A), and its global minimum is neither folded-out nor folded-in conformation. Erythromycin B at its global minimum (E = 143.86 kJ mol⁻¹) adopts a folded-in conformation, and erythromycin C (E = 73.48 kJ mol⁻¹) a folded-out conformation similar to erythromycin A (Figure 2B). Each global minimum was found multiple times. Minimum inhibitory concentrations for tylosin A and tylosin B were lower than for clarithromycin and azithromycin (Table 1), as expected, based on our earlier findings connected to the relation between the conformation of the global minimum and the spectrum of anti-bacterial activities (Arsic et al., 2014). Full assignments for the ¹H and ¹³C spectra of tylosin A in CDCl₃ and tylosin B in phosphate buffered D₂O were achieved.

Conclusions

The antibacterial activities of tylosin A and tylosin B found for the bacterial strains studied are lower than those found for clarithromycin and azithromycin. This is consistent with the global minimum conformations of the tylosins investigated, which are neither folded-out nor folded-in.

Table 1. Minimum inhibitory concentrations (MICs) expressed in µg mL⁻¹ for tylosin A and tylosin B compared to clarithromycin and azithromycin

<table>
<thead>
<tr>
<th>Bacterial strains</th>
<th>Clarithromycin</th>
<th>Azithromycin</th>
<th>Tylosin A</th>
<th>Tylosin B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli wound isolate</td>
<td>12</td>
<td>125</td>
<td>37.25</td>
<td>7.38</td>
</tr>
<tr>
<td>Bacillus cereus MBRS 421</td>
<td>0.2</td>
<td>4</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>Staphylococcus aureus wound isolate</td>
<td>0.2</td>
<td>18</td>
<td>31.25</td>
<td>500</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa PA01</td>
<td>62.5</td>
<td>19.6</td>
<td>250</td>
<td>82.5</td>
</tr>
<tr>
<td>Staphylococcus epidermidis clinical isolate</td>
<td>250</td>
<td>31.2</td>
<td>250</td>
<td>62.5</td>
</tr>
<tr>
<td>Serratia marcescens wound isolate</td>
<td>>500</td>
<td>>500</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>Corynebacterium xerosis wound isolate</td>
<td>>500</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

References